Core Mathematics C2 Paper A
 1.

The diagram shows the sector $O A B$ of a circle of radius 9.2 cm and centre O.
Given that the area of the sector is $37.4 \mathrm{~cm}^{2}$, find to 3 significant figures
(i) the size of $\angle A O B$ in radians,
(ii) the perimeter of the sector.
2.

$$
\mathrm{f}(x)=x^{3}+k x-20 .
$$

Given that $\mathrm{f}(x)$ is exactly divisible by $(x+1)$,
(i) find the value of the constant k,
(ii) solve the equation $\mathrm{f}(x)=0$.
3. Given that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sqrt{x}-x^{2} \tag{7}
\end{equation*}
$$

and that $y=\frac{2}{3}$ when $x=1$, find the value of y when $x=4$.
4. A geometric progression has third term 36 and fourth term 27.

Find
(i) the common ratio,
(ii) the fifth term,
(iii) the sum to infinity.
5. (i) Solve the equation

$$
\begin{equation*}
\log _{2}(6-x)=3-\log _{2} x . \tag{4}
\end{equation*}
$$

(ii) Find the smallest integer n such that

$$
\begin{equation*}
3^{n-2}>8^{250} \tag{4}
\end{equation*}
$$

6.

$$
\mathrm{f}(x)=\cos 2 x, \quad 0 \leq x \leq \pi .
$$

(i) Sketch the curve $y=\mathrm{f}(x)$.
(ii) Write down the coordinates of any points where the curve $y=\mathrm{f}(x)$ meets the coordinate axes.
(iii) Solve the equation $\mathrm{f}(x)=0.5$, giving your answers in terms of π.
7. (i) Find

$$
\begin{equation*}
\int\left(x+5+\frac{3}{\sqrt{x}}\right) \mathrm{d} x . \tag{4}
\end{equation*}
$$

(ii) Evaluate

$$
\begin{equation*}
\int_{-2}^{0}(3 x-1)^{2} \mathrm{~d} x . \tag{5}
\end{equation*}
$$

8. (a) An arithmetic series has a common difference of 7 .

Given that the sum of the first 20 terms of the series is 530 , find
(i) the first term of the series,
(ii) the smallest positive term of the series.
(b) The terms of a sequence are given by

$$
u_{n}=(n+k)^{2}, \quad n \geq 1 \text {, }
$$

where k is a positive constant.
Given that $u_{2}=2 u_{1}$,
(i) find the value of k,
(ii) show that $u_{3}=11+6 \sqrt{2}$.
9.

The diagram shows the curve $y=2 x^{2}+6 x+7$ and the straight line $y=2 x+13$.
(i) Find the coordinates of the points where the curve and line intersect.
(ii) Show that the area of the shaded region bounded by the curve and line is given by

$$
\int_{-3}^{1}\left(6-4 x-2 x^{2}\right) d x .
$$

(iii) Hence find the area of the shaded region.

